Cart (Loading....) | Create Account
Close category search window
 

An algorithm for data-driven bandwidth selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Comaniciu, D. ; Real-Time Vision & Modeling Dept., Siemens Corp. Res. Inc., Princeton, NJ, USA

The analysis of a feature space that exhibits multiscale patterns often requires kernel estimation techniques with locally adaptive bandwidths, such as the variable-bandwidth mean shift. Proper selection of the kernel bandwidth is, however, a critical step for superior space analysis and partitioning. This paper presents a mean shift-based approach for local bandwidth selection in the multimodal, multivariate case. The method is based on a fundamental property of normal distributions regarding the bias of the normalized density gradient. This paper demonstrates that, within the large sample approximation, the local covariance is estimated by the matrix that maximizes the magnitude of the normalized mean shift vector. Using this property, the paper develops a reliable algorithm which takes into account the stability of local bandwidth estimates across scales. The validity of the theoretical results is proven in various space partitioning experiments involving the variable-bandwidth mean shift.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:25 ,  Issue: 2 )

Date of Publication:

Feb 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.