By Topic

A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Maurer, C.R., Jr. ; Dept. of Neurosurg., Stanford Univ., CA, USA ; Rensheng Qi ; Raghavan, V.

A sequential algorithm is presented for computing the exact Euclidean distance transform (DT) of a k-dimensional binary image in time linear in the total number of voxels N. The algorithm, which is based on dimensionality reduction and partial Voronoi diagram construction, can be used for computing the DT for a wide class of distance functions, including the Lp and chamfer metrics. At each dimension level, the DT is computed by constructing the intersection of the Voronoi diagram whose sites are the feature voxels with each row of the image. This construction is performed efficiently by using the DT in the next lower dimension. The correctness and linear time complexity are demonstrated analytically and verified experimentally. The algorithm may be of practical value since it is relatively simple and easy to implement and it is relatively fast (not only does it run in O(N) time but the time constant is small). A simple modification of the algorithm computes the weighted Euclidean DT, which is useful for images with anisotropic voxel dimensions. A parallel version of the algorithm runs in O(N/p) time with p processors.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:25 ,  Issue: 2 )