By Topic

A global solution to sparse correspondence problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. Maciel ; Instituto de Sistemas e Robotica, Inst. Superior Tecnico, Lisboa, Portugal ; J. P. Costeira

We propose a new methodology for reliably solving the correspondence problem between sparse sets of points of two or more images. This is a key step inmost problems of computer vision and, so far, no general method exists to solve it. Our methodology is able to handle most of the commonly used assumptions in a unique formulation, independent of the domain of application and type of features. It performs correspondence and outlier rejection in a single step and achieves global optimality with feasible computation. Feature selection and correspondence are first formulated as an integer optimization problem. This is a blunt formulation, which considers the whole combinatorial space of possible point selections and correspondences. To find its global optimal solution, we build a concave objective function and relax the search domain into its convex-hull. The special structure of this extended problem assures its equivalence to the original one, but it can be optimally solved by efficient algorithms that avoid combinatorial search. This methodology can use any criterion provided it can be translated into cost functions with continuous second derivatives.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:25 ,  Issue: 2 )