By Topic

Subsurface dopant-induced features on the Si(100)2×1:H surface: fundamental study and applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liu, Lequn ; Dept. of Mater. Sci. & Eng., Univ. of Illinois, Urbana, IL, USA ; Yu, Jixin ; Lyding, J.W.

The lack of surface states within the bandgap of the perfect Si(100)2×1:H surface opens the way to scanning tunneling microscopy studies of dopant atom sites in Si(100). Both n- and p-type dopant-induced features were observed in filled- and empty-states images. The donor (arsenic)-induced feature looks as a protrusion in both the filled and empty states images, while the acceptor (boron)-induced feature appears as a hillock in the filled states image and a depression in the empty states image. The bias dependence, depth dependence, and dopant concentration dependence of the dopant-induced features were investigated in detail. Based on scattering theory, a numerical calculation was performed to achieve a fundamental understanding of these issues. The potential application of this study for three-dimensional dopant profiling with scanning tunneling microscopy on both p- and n-type samples is discussed, and the optimal scanning condition is also suggested. This technique may be a useful metric for characterizing dopant profiles in ultra-small electronic device structures.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:1 ,  Issue: 4 )