By Topic

On clustering and retrieval of video shots through temporal slices analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chong-Wah Ngo ; Dept. of Comput. Sci., City Univ. of Hong Kong, China ; Ting-Chuen Pong ; Hong-Jiang Zhang

Based on the analysis of temporal slices, we propose novel approaches for clustering and retrieval of video shots. Temporal slices are a set of two-dimensional (2-D) images extracted along the time dimension of an image volume. They encode rich set of visual patterns for similarity measure. In this paper, we first demonstrate that tensor histogram features extracted from temporal slices are suitable for motion retrieval. Subsequently, we integrate both tensor and color histograms for constructing a two-level hierarchical clustering structure. Each cluster in the top level contains shots with similar color while each cluster in bottom level consists of shots with similar motion. The constructed structure is then used for the cluster-based retrieval. The proposed approaches are found to be useful particularly for sports games, where motion and color are important visual cues when searching and browsing the desired video shots.

Published in:

Multimedia, IEEE Transactions on  (Volume:4 ,  Issue: 4 )