By Topic

Likelihood maximization approach to image registration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yang-Ming Zhu ; Nucl. Medicine Div., Philips Med. Syst., Cleveland, OH, USA ; Cochoff, S.M.

A likelihood maximization approach to image registration is developed in this paper. It is assumed that the voxel values in two images in registration are probabilistically related. The principle of maximum likelihood is then exploited to find the optimal registration: the likelihood that given image f, one has image g and given image g, one has image f is optimized with respect to registration parameters. All voxel pairs in the overlapping volume or a portion of it can be used to compute the likelihood. A knowledge-based method and a self-consistent technique are proposed to obtain the probability relation. In the knowledge-based method, prior knowledge of the distribution of voxel pairs in two registered images is assumed, while such knowledge is not required in the self-consistent method. The accuracy and robustness of the likelihood maximization approach is validated by single modality registration of single photon emission computed tomographic (SPECT) images and magnetic resonance (MR) images and by multimodality registration (MR/SPECT). The results demonstrate that the performance of the likelihood maximization approach is comparable to that of the mutual information maximization technique. Finally the relationship between the likelihood approach and the entropy, conditional entropy, and mutual information approaches is discussed.

Published in:

Image Processing, IEEE Transactions on  (Volume:11 ,  Issue: 12 )