By Topic

Process development and adhesion behavior of electroless copper on liquid crystal polymer (LCP) for electronic packaging application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
L. Chen ; Sch. of Mech. Eng., Chalmers Univ. of Technol., Goteborg, Sweden ; M. Crnic ; Zonghe Lai ; Johan Liu

Liquid crystal polymer (LCP) has potentially a very wide application as substrate material in electronic packaging applications because of its unique advantages. The work in this paper was performed to realize the metallization of LCP for the purpose of board fabrication, and to study the adhesion between deposited copper and LCP. A homogenous electroless plated copper layer on LCP with 4 to 5 μm thickness was achieved, while it increased up to 40 μm with the subsequent electroplating. The timescale of etching, deposit ion rate, and pH value were gradually changing during the plating process and the influences on copper layer quality were investigated. The adhesion force of the copper-LCP layer system was measured by a shear-off-method. Scanning electron microscopy (SEM) was used to check the surface morphology after etching and the interface after shearing on both the backside of the copper layer and the LCP side. The relationship between the shear-off adhesion of copper and the time of chemical etching before plating was examined, and the optimal etching time is discussed. Heat treatment after plating was used, and it was shown that this significantly improved the adhesion strength.

Published in:

IEEE Transactions on Electronics Packaging Manufacturing  (Volume:25 ,  Issue: 4 )