Cart (Loading....) | Create Account
Close category search window
 

Bio-mimetic trajectory generation of robots via artificial potential field with time base generator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tsuji, T. ; Dept. of Artificial Complex Syst. Eng., Hiroshima Univ., Japan ; Tanaka, Y. ; Morasso, P.G. ; Sanguineti, V.
more authors

This paper proposes a new trajectory generation method that allows full control of transient behavior, namely, time-to-target and velocity profile, based on the artificial potential field approach for a real-time robot motion planning problem. Little attention, in fact, has been paid to the temporal aspects of this class of path planning methods. The ability to control the motion time to the target as well as the velocity profile of the generated trajectories, however, is of great interest in real-life applications. In the paper, we argue that such transient behavior should be taken into account within the framework of the artificial potential field approach.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:32 ,  Issue: 4 )

Date of Publication:

Nov. 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.