By Topic

Guaranteed robust nonlinear estimation with application to robot localization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jaulin, L. ; Lab. d''Ingenierie des Syst.s Automatises, Angers, France ; Kieffer, M. ; Walter, E. ; Meizel, D.

When reliable prior bounds on the acceptable errors between the data and corresponding model outputs are available, bounded-error estimation techniques make it possible to characterize the set of all acceptable parameter vectors in a guaranteed way, even when the model is nonlinear and the number of data points small. However, when the data may contain outliers, i.e., data points for which these bounds should be violated, this set may turn out to be empty, or at least unrealistically small. The outlier minimal number estimator (OMNE) has been designed to deal with such a situation, by minimizing the number of data points considered as outliers. OMNE has been shown in previous papers to be remarkably robust, even to a majority of outliers. Up to now, it was implemented by random scanning, so its results could not be guaranteed. In this paper, a new algorithm based on set inversion via interval analysis provides a guaranteed OMNE, which is applied to the initial localization of an actual robot in a partially known two-dimensional (2-D) environment. The difficult problems of associating range data to landmarks of the environment and of detecting potential outliers are solved as byproducts of the procedure.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:32 ,  Issue: 4 )