By Topic

A prediction-based neural network scheme for lossless data compression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
R. Logeswaran ; Fac. of Eng., Multimedia Univ., Cyberjaya, Malaysia

This paper proposes a modified block-adaptive prediction-based neural network scheme for lossless data compression. A variety of neural network models from a selection of different network types, including feedforward, recurrent, and radial basis configurations are implemented with the scheme. The scheme is further expanded with combinations of popular lossless encoding algorithms. Simulation results are presented, taking characteristic features of the models, transmission issues, and practical considerations into account to determine optimized configuration, suitable training strategies, and implementation schemes. Estimations are used for comparisons of these characteristics with the existing schemes. It is also shown that the adaptations of the improvised scheme increases performance of even the classical predictors evaluated. In addition, the results obtained support that the total processing time of the two-stage scheme can, in certain cases, be faster than just using lossless encoders. Findings of the paper may be beneficial for future work, such as, in the hardware implementations of dedicated neural chips for lossless compression.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)  (Volume:32 ,  Issue: 4 )