By Topic

Entropy and the timing capacity of discrete queues

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Prabhakar, B. ; Dept. of Electr. Eng., Stanford Univ., CA, USA ; Gallager, R..

Queueing systems which map Poisson input processes to Poisson output processes have been well-studied in classical queueing theory. This paper considers two discrete-time queues whose analogs in continuous-time possess the Poisson-in-Poisson-out property. It is shown that when packets arriving according to an arbitrary ergodic stationary arrival process are passed through these queueing systems, the corresponding departure process has an entropy rate no less (some times strictly more) than the entropy rate of the arrival process. Some useful by-products are discrete-time versions of: (i) a proof of the celebrated Burke's (1956) theorem, (ii) a proof of the uniqueness, amongst renewal inputs, of the Poisson process as a fixed point for exponential server queues proposed by Anantharam (1993), and (iii) connections with the timing capacity of queues described by Anantharam and Verdu (1996).

Published in:

Information Theory, IEEE Transactions on  (Volume:49 ,  Issue: 2 )