By Topic

The effect of solder bump pitch on the underfill flow

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wen-Bin Young ; Dept. of Aeronaut. & Astronaut., Nat. Cheng-Kung Univ., Tainan, Taiwan ; Wen-Lin Yang

An underfill encapsulant was used to fill the gap between the chip and substrate around solder joints to improve the long-term reliability of flip chip interconnect systems. The underfill encapsulant was filled by the capillary effect. In this study, the filling time and pattern of the underfill flow in the process with different bumping pitch, bump diameter, and gap size were investigated. A modified Hele-Shaw flow model, that considered the flow resistance in both the thickness direction and the restrictions between solder bumps, was used. This model estimated the flow resistance induced by the chip and substrate as well as the solder bumps, and provided a reasonable flow front prediction. A modified model that considered the effect of fine pitch solder bumps was also proposed to estimate the capillary force in fine pitch arrangements. It was found that, on a full array solder bump pattern, the filling flow was actually faster for fine pitch bumps in some arrangements. The filling time of the underfill process depends on the parameters of bumping pitch, bump diameter, and gap size. A proposed capillary force parameter can provide information on bump pattern design for facilitating the underfilling process.

Published in:

IEEE Transactions on Advanced Packaging  (Volume:25 ,  Issue: 4 )