Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Identification of a nonlinear dynamic systems using recurrent multilayer neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nouri, K. ; Ecole Polytechnique de Tunisie, Tunisia ; Dhaouadi, R. ; Braiek, N.B.H.

Multilayer neural networks have been used successfully in many system identification and control problems, and numerous applications have been suggested in the literature. Backpropagation is one of the standard methods used in these cases to adjust the weights/biases of the neural networks. In a recent paper (Dhaouadi and Nouri, 1999) the authors suggested the use of multilayer neural networks for the identification and control of nonlinear dynamical systems and proposed an extension of the backpropagation method. In this paper, system identification with recurrent multilayer neural networks is studied, and we present in detail the update-rules of the dynamic backpropagation method, so that it can be applied in a straightforward manner for the optimisation of the parameters of these recurrent multilayer neural networks.

Published in:

Systems, Man and Cybernetics, 2002 IEEE International Conference on  (Volume:5 )

Date of Conference:

6-9 Oct. 2002