Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

A new approach to perceptron training

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Eitzinger, C. ; Protactor Res., Steyr, Austria ; Plach, H.

The training of perceptrons is discussed in the framework of nonsmooth optimization. An investigation of Rosenblatt's perceptron training rule shows that convergence or the failure to converge in certain situations can be easily understood in this framework. An algorithm based on results from nonsmooth optimization is proposed and its relation to the "constrained steepest descent" method is investigated. Numerical experiments verify that the "constrained steepest descent" algorithm may be further improved by the integration of methods from nonsmooth optimization.

Published in:

Neural Networks, IEEE Transactions on  (Volume:14 ,  Issue: 1 )