By Topic

Content-based audio classification and retrieval by support vector machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Guo, G. ; Comput. Sci. Dept., Univ. of Wisconsin, Madison, WI, USA ; Li, S.Z.

Support vector machines (SVMs) have been recently proposed as a new learning algorithm for pattern recognition. In this paper, the SVMs with a binary tree recognition strategy are used to tackle the audio classification problem. We illustrate the potential of SVMs on a common audio database, which consists of 409 sounds of 16 classes. We compare the SVMs based classification with other popular approaches. For audio retrieval, we propose a new metric, called distance-from-boundary (DFB). When a query audio is given, the system first finds a boundary inside which the query pattern is located. Then, all the audio patterns in the database are sorted by their distances to this boundary. All boundaries are learned by the SVMs and stored together with the audio database. Experimental comparisons for audio retrieval are presented to show the superiority of this novel metric to other similarity measures.

Published in:

Neural Networks, IEEE Transactions on  (Volume:14 ,  Issue: 1 )