Cart (Loading....) | Create Account
Close category search window
 

Face recognition using LDA-based algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lu, J. ; Multimedia Lab., Univ. of Toronto, Ont., Canada ; Plataniotis, K.N. ; Venetsanopoulos, A.N.

Low-dimensional feature representation with enhanced discriminatory power is of paramount importance to face recognition (FR) systems. Most of traditional linear discriminant analysis (LDA)-based methods suffer from the disadvantage that their optimality criteria are not directly related to the classification ability of the obtained feature representation. Moreover, their classification accuracy is affected by the "small sample size" (SSS) problem which is often encountered in FR tasks. In this paper, we propose a new algorithm that deals with both of the shortcomings in an efficient and cost effective manner. The proposed method is compared, in terms of classification accuracy, to other commonly used FR methods on two face databases. Results indicate that the performance of the proposed method is overall superior to those of traditional FR approaches, such as the eigenfaces, fisherfaces, and D-LDA methods.

Published in:

Neural Networks, IEEE Transactions on  (Volume:14 ,  Issue: 1 )

Date of Publication:

Jan 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.