By Topic

Implementation issues of neuro-fuzzy hardware: going toward HW/SW codesign

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Reyneri, L.M. ; Dipt. di Elettronica, Politecnico di Torino, Italy

This paper presents an annotated overview of existing hardware implementations of artificial neural and fuzzy systems and points out limitations, advantages, and drawbacks of analog, digital, pulse stream (spiking), and other implementation techniques. We analyze hardware performance parameters and tradeoffs, and the bottlenecks which are intrinsic in several implementation methodologies. The constraints posed by hardware technologies onto algorithms and performance are also described. The results of the analyses proposed lead to the use of hardware/software codesign, as a means of exploiting the best from both hardware and software techniques. Hardware/software codesign appears, at present, the most promising research area concerning the implementation of neuro-fuzzy systems (not including bioinspired systems, which are out of the scope of this work), as it allows the fast design of complex systems with the highest performance/cost ratio.

Published in:

Neural Networks, IEEE Transactions on  (Volume:14 ,  Issue: 1 )