By Topic

A neural-network appearance-based 3-D object recognition using independent component analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sahambi, H.S. ; Dept. of Electr. & Comput. Eng., Concordia Univ., Montreal, Canada ; Khorasani, K.

This paper presents results on appearance-based three-dimensional (3-D) object recognition (3DOR) accomplished by utilizing a neural-network architecture developed based on independent component analysis (ICA). ICA has already been applied for face recognition in the literature with encouraging results. In this paper, we are exploring the possibility of utilizing the redundant information in the visual data to enhance the view based object recognition. The underlying premise here is that since ICA uses high-order statistics, it should in principle outperform principle component analysis (PCA), which does not utilize statistics higher than two, in the recognition task. Two databases of images captured by a CCD camera are used. It is demonstrated that ICA did perform better than PCA in one of the databases, but interestingly its performance was no better than PCA in the case of the second database. Thus, suggesting that the use of ICA may not necessarily always give better results than PCA, and that the application of ICA is highly data dependent. Various factors affecting the differences in the recognition performance using both methods are also discussed.

Published in:

Neural Networks, IEEE Transactions on  (Volume:14 ,  Issue: 1 )