By Topic

Robust output feedback control of nonlinear stochastic systems using neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. Battilotti ; Dipt. di Informatica e Sistemistica, La Sapienza Univ., Rome, Italy ; A. De Santis

We present an adaptive output feedback controller for a class of uncertain stochastic nonlinear systems. The plant dynamics is represented as a nominal linear system plus nonlinearities. In turn, these nonlinearities are decomposed into a part, obtained as the best approximation given by neural networks, plus a remaining part which is treated as uncertainties, modeling approximation errors, and neglected dynamics. The weights of the neural network are tuned adaptively by a Lyapunov design. The proposed controller is obtained through robust optimal design and combines together parameter projection, control saturation, and high-gain observers. High performances are obtained in terms of large errors tolerance as shown through simulations.

Published in:

IEEE Transactions on Neural Networks  (Volume:14 ,  Issue: 1 )