By Topic

Soft learning vector quantization and clustering algorithms based on non-Euclidean norms: multinorm algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Karayiannis, N.B. ; Dept. of Electr. & Comput. Eng., Univ. of Houston, TX, USA ; Randolph-Gips, M.M.

This paper presents the development of soft clustering and learning vector quantization (LVQ) algorithms that rely on multiple weighted norms to measure the distance between the feature vectors and their prototypes. Clustering and LVQ are formulated in this paper as the minimization of a reformulation function that employs distinct weighted norms to measure the distance between each of the prototypes and the feature vectors under a set of equality constraints imposed on the weight matrices. Fuzzy LVQ and clustering algorithms are obtained as special cases of the proposed formulation. The resulting clustering algorithm is evaluated and benchmarked on three data sets that differ in terms of the data structure and the dimensionality of the feature vectors. This experimental evaluation indicates that the proposed multinorm algorithm outperforms algorithms employing the Euclidean norm as well as existing clustering algorithms employing weighted norms.

Published in:

Neural Networks, IEEE Transactions on  (Volume:14 ,  Issue: 1 )