By Topic

A reinforcement discrete neuro-adaptive control for unknown piezoelectric actuator systems with dominant hysteresis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chih-Lyang Hwang ; Dept. of Mech. Eng., Tatung Univ., Taipei, Taiwan ; Chau Jan

The theoretical and experimental studies of a reinforcement discrete neuro-adaptive control for unknown piezoelectric actuator systems with dominant hysteresis are presented. Two separate nonlinear gains, together with an unknown linear dynamical system, construct the nonlinear model (NM) of the piezoelectric actuator systems. A nonlinear inverse control (NIC) according to the learned NM is then designed to compensate the hysteretic phenomenon and to track the reference input without the risk of discontinuous response. Because the uncertainties are dynamic, a recurrent neural network (RNN) with residue compensation is employed to model them in a compact subset. Then, a discrete neuro-adaptive sliding-mode control (DNASMC) is designed to enhance the system performance. The stability of the overall system is verified by Lyapunov stability theory. Comparative experiments for various control schemes are also given to confirm the validity of the proposed control.

Published in:

Neural Networks, IEEE Transactions on  (Volume:14 ,  Issue: 1 )