Cart (Loading....) | Create Account
Close category search window
 

Assessment of silicon MOS and carbon nanotube FET performance limits using a general theory of ballistic transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Guo, Jing ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Datta, Supriyo ; Lundstrom, Mark ; Brink, M.
more authors

A simple model for ballistic nanotransistors, which extends previous work by treating both the charge control and the quantum capacitance limits of MOSFET-like transistors, is presented. We apply this new model to MOSFET-like carbon nanotube FETs (CNTFETs) and to MOSFETs at the scaling limit. The device physics for operation at ballistic and quantum capacitance limits are explored. Based on the analysis of recently reported CNTFETs, we compare CNTFETs to MOSFETs. The potential performance advantages over Si that might be achieved at the scaling limit are established by using the new model.

Published in:

Electron Devices Meeting, 2002. IEDM '02. International

Date of Conference:

8-11 Dec. 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.