By Topic

Chip design of portable speech memopad suitable for persons with visual disabilities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jhing-Fa Wang ; Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Jia-Ching Wang ; Han-Chiang Chen ; Tai-Lung Chen
more authors

This paper presents the design of a speech recognition and compression chip for portable memopad devices, especially suitable for use by the visually impaired. The proposed chip design is based on several cores of which they can be regarded as intellectual property (IP) cores to be used for a variety of speech-related application systems. A cepstrum extraction core and a dynamic warping core are designed for mapping the speech recognition algorithms. In the cepstrum extraction core, a novel architecture computes the autocorrelation between the overlapping frames using two pairs of shift registers and an intelligent accumulation procedure. The architecture of the dynamic time warping core uses only a single processing element, and is based on our extensive study of the relationship among the nodes in the dynamic time warping lattice. Bit rate is the key factor affecting the memory size for speech compression; therefore, a very low bit-rate speech coder is used. The speech coder exploits a line-spectrum-based interpolation method, which yields fine quality synthesized speech despite the low 1.6 kbps bit rate. The 1.6 kbps vocoder core is cost-effective, and it integrates both encoder and decoder algorithms. The proposed design has been tested via hardware simulations on Xilinx Virtex series FPGAs and a semi-custom chip fabricated by 0.35 μm CMOS single-poly-four-metal technology on a die size approximately 4.46×4.46 mm2.

Published in:

IEEE Transactions on Speech and Audio Processing  (Volume:10 ,  Issue: 8 )