By Topic

A study of digital and analog automatic-amplitude control circuitry for voltage-controlled oscillators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rogers, J.W.M. ; Dept. of Electron., Carleton Univ., Ottawa, Ont., Canada ; Rahn, D. ; Plett, C.

This paper presents both analog and digital automatic-amplitude control techniques for voltage-controlled oscillators (VCOs). These feedback mechanisms help to keep the VCOs at an optimum amplitude over temperature, process, and voltage variations. The VCOs were fabricated in a 50-GHz SiGe BiCMOS process. They use MOS varactors and achieve a 600-MHz tuning range in the 2-GHz band. The phase noise of the VCO with analog control was measured to be -99 dBc/Hz at 100-kHz offset from the carrier. The digital loop allows for a more optimized VCO core that achieves a phase noise of -108.5 dBc/Hz at 100-kHz offset in a low-gain mode. Techniques for suppressing the phase noise in regions of high gain are also presented. The VCOs draw between 4 and 8 mA from a 3.3-V supply.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:38 ,  Issue: 2 )