By Topic

Millimeter-wave VCOs with wide tuning range and low phase noise, fully integrated in a SiGe bipolar production technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hao Li ; Ruhr-Univ. Bochum, Germany ; Rein, H.-M.

Millimeter-wave voltage-controlled oscillators (VCOs) are presented which are fully integrated in a SiGe bipolar production technology. The low-cost differential circuits have been designed and optimized for low phase noise and wide tuning range. As an example, by varying the bias voltage of the on-chip varactor, the oscillation frequency can be changed from 36 to 46.9 GHz (i.e., by 26%). In this wide frequency range, phase noise between -107 and -110dBc/Hz at 1-MHz offset frequency and single-ended voltage swing of about 0.95Vpp ±10% (differential: 1.9Vpp) were measured. The circuit consumes 280mW at -5.5-V supply voltage. The high oscillation frequency and low phase noise at wide tuning range are record values for fully integrated oscillators in Si-based technologies. The basic oscillator was then extended by a cascode stage as an output buffer. Now the VCO performance is no longer degraded if nonperfectly terminated transmission lines are driven. Thus, the chip can be mounted in a low-cost socket; however, at the cost of increased phase noise and power consumption.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:38 ,  Issue: 2 )