By Topic

Soft-input decoder for decoding of internally channel coded fiber-optic CDMA communication systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Azmi, P. ; Dept. of Electr. Eng., Sharif Univ. of Technol., Tehran, Iran ; Nasiri-Kenari, M. ; Salehi, J.A.

We propose using a soft-input decoder for the decoding of internally convolutional coded Poisson noise-dominated fiber-optic code-division multiple-access (CDMA) communication systems using optical orthogonal codes. We first compute the coded symbol log-likelihoods at the output of the Poisson noise-dominated channel, which is then used by a soft-input maximum-likelihood decoder, for a fiber-optic CDMA system assuming both on-off keying and binary pulse position modulation schemes. Furthermore, we develop a discrete soft-output channel model for a Poisson noise-dominated channel, with which we evaluate the upper bound on the bit error probability of the internally coded Poisson noise-dominated fiber-optic CDMA system using a soft-input decoder. It is shown that the soft-input decoder significantly outperforms the hard-input decoder. Furthermore, the performance of the soft-input decoder is also evaluated in the presence of different values of dark current.

Published in:

Communications, IEEE Transactions on  (Volume:50 ,  Issue: 12 )