By Topic

Outdoor MIMO wireless channels: models and performance prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
D. Gesbert ; Dept. of Informatics, Univ. of Oslo, Norway ; H. Bolcskei ; D. A. Gore ; A. J. Paulraj

We present a new model for multiple-input-multiple-output (MIMO) outdoor wireless fading channels and their capacity performance. The proposed model is more general and realistic than the usual independent and identically distributed (i.i.d.) model, and allows us to investigate the behavior of channel capacity as a function of the scattering radii at transmitter and receiver, distance between the transmit and receive arrays, and antenna beamwidths and spacing. We show how the MIMO capacity is governed by spatial fading correlation and the condition number of the channel matrix through specific sets of propagation parameters. The proposed model explains the existence of "pinhole" channels which exhibit low spatial fading correlation at both ends of the link but still have poor rank properties, and hence, low ergodic capacity. In fact, the model suggests the existence of a more general family of channels spanning continuously from full rank i.i.d. to low-rank pinhole cases. We suggest guidelines for predicting high rank (and hence, high ergodic capacity) in MIMO channels, and show that even at long ranges, high channel rank can easily be sustained under mild scattering conditions. Finally, we validate our results by simulations using ray tracing techniques. Connections with basic antenna theory are made.

Published in:

IEEE Transactions on Communications  (Volume:50 ,  Issue: 12 )