By Topic

Low-power motion vector estimation using iterative search block-matching methods and a high-speed non-destructive CMOS image sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
S. Kawahito ; Res. Inst. of Electron., Shizuoka Univ., Hamamatsu, Japan ; D. Handoko ; Y. Tadokoro ; A. Matsuzawa

In this paper, motion vector (MV) estimation methods with high-speed intermediate pictures for low-power video compression are proposed. The intermediate pictures are obtained by a special type of CMOS image sensor. An adaptive iterative-search block matching is proposed to obtain precise MVs of video-rate pictures from high-speed intermediate pictures with the reduced computational complexity. The sensor captures high-speed intermediate pictures without destructing signal charge and video-rate pictures with full signal accumulation time. The proposed active pixel sensor using bidirectional multiple charge transfer is useful for the nondestructive intermediate imaging with a reduced fixed pattern noise. The image sensor chip has been implemented by using 0.35-μm CMOS technology. It operates with 3.3 V and captures 480 frames/s high-speed nondestructive intermediate pictures and 30 frame/s fully accumulated video-rate pictures. The proposed adaptive iterative-search block matching has a comparable precision to a full search block matching with reduction of computational complexity by a factor of about 1/13, on average. It also reduces the data-loading rate from the memory by a factor of about 1/4.

Published in:

IEEE Transactions on Circuits and Systems for Video Technology  (Volume:12 ,  Issue: 12 )