Cart (Loading....) | Create Account
Close category search window
 

Performance improvements for sector antennas using feature extraction and spatial interference cancellation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Nordberg, J. ; Dept. of Telecommun. & Signal Process., Blekinge Inst. of Technol., Ronneby, Sweden ; Nordholm, S. ; Grbic, Nedelko ; Mohammed, A.
more authors

Effective utilization of the spatial domain enhances the capacity of a mobile radio network. A common technique is to use sector antennas, where the sectors are formed by weighting the outputs from the antenna elements. This results in spatial domain selectivity, which significantly improves the signal-to-(noise and interference) ratio in the received signals. However, the operation of the sector antenna will be limited by the sidelobes of the corresponding beam patterns. By introducing a blind spatial interference canceler that combines the fix beamformers in the sector antenna with blind signal separation, a significant improvement in the multiuser interference suppression can be achieved. Thus, it will be able to efficiently handle the near-far problem, where the users are received with different power. The blind signal separation is performed by an independent component analysis algorithm. The convergence rate of the algorithm is significantly improved compared to the standard formulation by taking into account the modulation format. The algorithm is further improved by introducing a forgetting factor on the weight update. The blind spatial interference canceler is evaluated by simulations using the mean square error and the bit error rate as quality measures. The results show that the mean square error obtained from the blind spatial interference canceler is within 0.5 dB from the optimum Wiener solution for signal-to-noise ratios greater than 0 dB.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:51 ,  Issue: 6 )

Date of Publication:

Nov 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.