By Topic

Computing and rendering point set surfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Alexa, M. ; Dept. of Comput. Sci., Tech. Univ. Darmstadt, Germany ; Behr, J. ; Cohen-Or, D. ; Fleishman, S.
more authors

We advocate the use of point sets to represent shapes. We provide a definition of a smooth manifold surface from a set of points close to the original surface. The definition is based on local maps from differential geometry, which are approximated by the method of moving least squares (MLS). The computation of points on the surface is local, which results in an out-of-core technique that can handle any point set. We show that the approximation error is bounded and present tools to increase or decrease the density of the points, thus allowing an adjustment of the spacing among the points to control the error. To display the point set surface, we introduce a novel point rendering technique. The idea is to evaluate the local maps according to the image resolution. This results in high quality shading effects and smooth silhouettes at interactive frame rates.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:9 ,  Issue: 1 )