By Topic

Functional MRI activity characterization using response time shift estimates from curve evolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Desai, M. ; C. S. Draper Lab., Cambridge, MA, USA ; Mangoubi, R. ; Shah, J. ; Karl, W.
more authors

Characterizing the response of the brain to a stimulus based on functional magnetic resonance imaging data is a major challenge due to the fact that the response time delay of the brain may be different from one stimulus phase to the next and from pixel to pixel. To enhance detectability, this work introduces the use of a curve evolution approach that provides separate estimates of the response time shifts at each phase of the stimulus on a pixel-by-pixel basis. The approach relies on a parsimonious but simple model that is nonlinear in the time shifts of the response relative to the stimulus and linear in the gains. To effectively use the response time shift estimates in a subspace detection framework, we implement a robust hypothesis test based on a Laplacian noise model. The algorithm provides a pixel-by-pixel functional characterization of the brain's response. The results based on experimental data show that response time shift estimates, when properly implemented, enhance detectability without sacrificing robustness.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:21 ,  Issue: 11 )