By Topic

On the limits of bottom-up computer simulation: towards a nonlinear modeling culture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Richardson, K.A. ; Inst. for the Study of Coherence & Emergence, Boston, MA, USA

In the complexity and simulation communities there is growing support for the use of bottom-up computer-based simulation in the analysis of complex systems. The presumption is that because these models are more complex than their linear predecessors they must be more suited to the modeling of systems that appear, superficially at least, to be (compositionally and dynamically) complex. Indeed the apparent ability of such models to allow the emergence of collective phenomena from quite simple underlying rules is very compelling. But does this 'evidence' alone 'prove' that nonlinear bottom-up models are superior to simpler linear models when considering complex systems behavior? Philosophical explorations concerning the efficacy of models, whether they be formal scientific models or our personal worldviews, has been a popular pastime for many philosophers, particularly philosophers of science. This paper offers yet another critique of modeling that uses the results and observations of nonlinear mathematics and bottom-up simulation themselves to develop a modeling paradigm that is significantly broader than the traditional model-focused paradigm. In this broader view of modeling we are encouraged to concern ourselves more with the modeling process rather than the (computer) model itself and embrace a nonlinear modeling culture. This emerging view of modeling also counteracts the growing preoccupation with nonlinear models over linear models.

Published in:

System Sciences, 2003. Proceedings of the 36th Annual Hawaii International Conference on

Date of Conference:

6-9 Jan. 2003