By Topic

Distributed dynamic strain measurement using a correlation-based Brillouin sensing system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hotate, K. ; Dept. of Electron. Eng., Univ. of Tokyo, Japan ; Ong, S.S.L.

Conventional fiber Brillouin-based strain sensors are capable of distributed sensing, making them advantageous over fiber Bragg grating-based sensors for structural monitoring applications. However, Brillouin sensors have low spatial resolution and are inappropriate for dynamic strain measurements as they have large measurement times of several minutes. We present a correlation-based continuous-wave technique for high spatial resolution and distributed dynamic strain measurements using stimulated Brillouin scattering. Using our technique, we have successfully measured dynamic strain from a 5-cm vibrating section, at a sampling rate of 8.8 Hz with a strain accuracy of about /spl plusmn/38 μ/spl epsiv/.

Published in:

Photonics Technology Letters, IEEE  (Volume:15 ,  Issue: 2 )