Cart (Loading....) | Create Account
Close category search window
 

The improved BiCGStab method for large and sparse unsymmetric linear systems on parallel distributed memory architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

In this paper, an improved version of the BiCGStab (IBiCGStab) method for the solutions of large and sparse linear systems of equations with unsymmetric coefficient matrices is proposed. The method combines elements of numerical stability and parallel algorithm design without increasing the computational costs. The algorithm is derived such that all inner products of a single iteration step are independent and communication time required for the inner product can be overlapped efficiently with computation time of vector updates. Therefore, the cost of global communication which represents the bottleneck of the parallel performance can be significantly reduced. The resulting IBiCGStab algorithm maintains the favorable properties of the original method while not increasing computational costs. Data distribution suitable for both irregularly and regularly structured matrices based on the analysis of the nonzero matrix elements is presented. Communication scheme is supported by overlapping execution of computation and communication to reduce waiting times. The efficiency of this method is demonstrated by numerical experimental results carried out on a massively parallel distributed memory system.

Published in:

Algorithms and Architectures for Parallel Processing, 2002. Proceedings. Fifth International Conference on

Date of Conference:

23-25 Oct. 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.