By Topic

An FDTD/ray-tracing analysis method for wave penetration through inhomogeneous walls

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ying Wang ; Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Ont., Canada ; Chaudhuri, S.K. ; Safavi-Naeini, Safieddin

A novel method of studying wave penetration through inhomogeneous walls using the hybrid technique based on combining finite-difference time-domain (FDTD) and ray tracing methods is presented . The FDTD method is used to analyze the transmission characteristics of inhomogeneous walls. Using the knowledge of the tangential electric and magnetic field distributions along the borders of the FDTD computation domain, rays are sent out to cover the rest of the environment so that prediction of signal coverage can be made more efficiently without compromising the accuracy. Numerical results of the method have been compared and shown to agree very well with those of measurement and those of full wave analysis. Examples have shown the inadequacy of the traditional ray tracing method in the presence of walls made of concrete blocks. However, the proposed method can accurately predict signal coverage by taking into account the scattered fields by the inhomogeneity inside the walls. The method does not add much to computational complexity. Reduction in computation time is even more significant when the incident waves can be approximated to be plane waves and the wall structure is periodic.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:50 ,  Issue: 11 )