By Topic

Digital filters with rational transfer functions, optimum magnitude, and minimum phase

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Parks, T.W. ; Rice University, Houston, TX

A class of digital filters having rational transfer functions, optimum magnitude in the Chebyshev sense, and minimum phase is discussed. These filters are required to have all zeros on the unit circle, as do the classic elliptic filters. An algorithm for design of these filters is presented which allows the order of numerator and denominator polynomials to differ. Several properties of low pass filters of this type are discussed such as the minimum attainable pass-band ripple for a given denominator order, and the effect of an extra ripple. Several examples are presented and compared with the elliptic filter. Filters are described which meet the same tolerance scheme as an elliptic filter with fewer coefficients than the elliptic filter.

Published in:

Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP '77.  (Volume:2 )

Date of Conference:

May 1977