By Topic

Parameter estimation using the autocorrelation of the discrete Fourier transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Manry, M.T. ; University of Texas at Arlington, Texas, USA ; Huddleston, C.

Optimal parameter estimation algorithms are developed using the maximum likelihood technique, when no statistics are available for the parameter. Sub-optimal parameter estimates, using one sample of the autocorrelation of the DFT, have been developed previously. In this paper, maximum likelihood estimates are derived, given the auto-correlation function of the received signal's DFT. These estimates sometimes require less computation time than conventional estimates, and frequently have a closed form or simple iterative implementation.

Published in:

Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP '87.  (Volume:12 )

Date of Conference:

Apr 1987