By Topic

Integration of acoustic information in a large vocabulary word recognizer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gupta, V. ; BNR and INRS- Télécommunications, Montreal, Quebec, Canada ; Lennig, M. ; Mermelstein, P.

This paper proposes a new way of using vector quantization for improving recognition performance for a 60,000 word vocabulary speaker-trained isolated word recognizer using a phonemic Markov model approach to speech recognition. We show that we can effectively increase the codebook size by dividing the feature vector into two vectors of lower dimensionality, and then quantizing and training each vector separately. For a small codebook size, integration of the results of the two parameter vectors provides significant improvement in recognition performance as compared to the quantizing and training of the entire feature set together. Even for a codebook size as small as 64, the results obtained when using the new quantization procedure are quite close to those obtained when using Gaussian distribution of the parameter vectors.

Published in:

Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP '87.  (Volume:12 )

Date of Conference:

Apr 1987