Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

An improved, highly parallel rank-one eigenvector update method with signal processing applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
DeGroat, R.D. ; University of Colorado, Boulder, CO ; Roberts, R.A.

In this paper, we discuss rank-one eigenvector updating schemes that are appropriate for tracking time-varying, narrow-band signals in noise. We show that significant reductions in computation are achieved by updating the eigenvalue decomposition (EVD) of a reduced rank version of the data covariance matrix, and that reduced rank updating yields a lower threshold breakdown than full rank updating. We also show that previously published eigenvector updating algorithms [1], [10], suffer from a linear build-up of roundoff error which becomes significant when large numbers of recursive updates are performed. We then show that exponential weighting together with pairwise Gram Schmidt partial orthogonalization at each update virtually eliminates the build-up of error making the rank-one update a useful numerical tool for recursive updating. Finally, we compare the frequency estimation performance of reduced rank weighted linear prediction and the LMS algorithm.

Published in:

Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP '87.  (Volume:12 )

Date of Conference:

Apr 1987