By Topic

Opportunity cost algorithms for reduction of I/O and interprocess communication overhead in a computing cluster

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Keren, A. ; Inst. of Comput. Sci., Hebrew Univ., Jerusalem, Israel ; Barak, A.

Computing clusters (CC) consisting of several connected machines, could provide a high-performance, multiuser, timesharing environment for executing parallel and sequential jobs. In order to achieve good performance in such an environment, it is necessary to assign processes to machines in a manner that ensures efficient allocation of resources among the jobs. The paper presents opportunity cost algorithms for online assignment of jobs to machines in a CC. These algorithms are designed to improve the overall CPU utilization of the cluster and to reduce the I/O and the interprocess communication (IPC) overhead. Our approach is based on known theoretical results on competitive algorithms. The main contribution of the paper is how to adapt this theory into working algorithms that can assign jobs to machines in a manner that guarantees near-optimal utilization of the CPU resource for jobs that perform I/O and IPC operations. The developed algorithms are easy to implement. We tested the algorithms by means of simulations and executions in a real system and show that they outperform existing methods for process allocation that are based on ad hoc heuristics.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:14 ,  Issue: 1 )