By Topic

Structural pattern recognition using genetic algorithms with specialized operators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Khoo, K.G. ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Suganthan, P.N.

This paper presents a genetic algorithm (GA)-based optimization procedure for structural pattern recognition in a model-based recognition system using attributed relational graph (ARG) matching technique. The objective of our work is to improve the GA-based ARG matching procedures leading to a faster convergence rate and better quality mapping between a scene ARG and a set of given model ARGs. In this study, potential solutions are represented by integer strings indicating the mapping between scene and model vertices. The fitness of each solution string is computed by accumulating the similarity between the unary and binary attributes of the matched vertex pairs. We propose novel crossover and mutation operators, specifically for this problem. With these specialized genetic operators, the proposed algorithm converges to better quality solutions at a faster rate than the standard genetic algorithm (SGA). In addition, the proposed algorithm is also capable of recognizing multiple instances of any model object. An efficient pose-clustering algorithm is used to eliminate occasional wrong mappings and to determine the presence/pose of the model in the scene. We demonstrate the superior performance of our proposed algorithm using extensive experimental results.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:33 ,  Issue: 1 )