By Topic

Recursive information granulation: aggregation and interpretation issues

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bargiela, Andrzej ; Dept. of Comput., Nottingham Trent Univ., UK ; Pedrycz, W.

This paper contributes to the conceptual and algorithmic framework of information granulation. We revisit the role of information granules that are relevant to several main classes of technical pursuits involving temporal and spatial granulation. A detailed algorithm of information granulation, regarded as an optimization problem reconciling two conflicting design criteria, namely, a specificity of information granules and their experimental relevance (coverage of numeric data), is provided in the paper. The resulting information granules are formalized in the language of set theory (interval analysis). The uniform treatment of data points and data intervals (sets) allows for a recursive application of the algorithm. We assess the quality of information granules through application of the fuzzy c-means (FCM) clustering algorithm. Numerical studies deal with two-dimensional (2D) synthetic data and experimental traffic data.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:33 ,  Issue: 1 )