By Topic

New approach to intelligent control systems with self-exploring process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Liang-Hsuan Chen ; Dept. of Ind. Manage. Sci., Nat. Cheng Kung Univ., Taiwan ; Cheng-Hsiung Chiang

This paper proposes an intelligent control system called self-exploring-based intelligent control system (SEICS). The SEICS is comprised of three basic mechanisms, namely, controller, performance evaluator (PE), and adaptor. The controller is constructed by a fuzzy neural network (FNN) to carry out the control tasks. The PE is used to determine whether or not the controller's performance is satisfactory. The adaptor, comprised of two elements, action explorer (AE) and rule generator (RG), plays the main role in the system for generating new control behaviors in order to enhance the control performance. AE operates through a three-stage self-exploration process to explore new actions, which is realized by the multiobjective genetic algorithm (GA). The RG transforms control actions to fuzzy rules based on a numerical method. The application of the adaptor can make a control system more adaptive in various environments. A simulation of robotic path-planning is used to demonstrate the proposed model. The results show that the robot reaches the target point from the start point successfully in the lack-of-information and changeable environments.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:33 ,  Issue: 1 )