Cart (Loading....) | Create Account
Close category search window

Regularization parameter estimation for feedforward neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ping Guo ; Dept. of Comput. Sci., Beijing Normal Univ., China ; Lyu, M.R. ; Chen, C.L.P.

Under the framework of the Kullback-Leibler (KL) distance, we show that a particular case of Gaussian probability function for feedforward neural networks (NNs) reduces into the first-order Tikhonov regularizer. The smooth parameter in kernel density estimation plays the role of regularization parameter. Under some approximations, an estimation formula is derived for estimating regularization parameters based on training data sets. The similarity and difference of the obtained results are compared with other work. Experimental results show that the estimation formula works well in sparse and small training sample cases.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:33 ,  Issue: 1 )

Date of Publication:

Feb 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.