By Topic

Pattern classification using fuzzy relational calculus

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ray, K.S. ; Electron. & Commun. Sci. Unit, Indian Stat. Inst., Calcutta, India ; Dinda, T.K.

Our aim is to design a pattern classifier using fuzzy relational calculus (FRC) which was initially proposed by Pedrycz (1990). In the course of doing so, we first consider a particular interpretation of the multidimensional fuzzy implication (MFI) to represent our knowledge about the training data set. Subsequently, we introduce the notion of a fuzzy pattern vector to represent a population of training patterns in the pattern space and to denote the antecedent part of the said particular interpretation of the MFI. We introduce a new approach to the computation of the derivative of the fuzzy max-function and min-function using the concept of a generalized function. During the construction of the classifier based on FRC, we use fuzzy linguistic statements (or fuzzy membership function to represent the linguistic statement) to represent the values of features (e.g., feature F1 is small and F2 is big) for a population of patterns. Note that the construction of the classifier essentially depends on the estimate of a fuzzy relation ℜ between the input (fuzzy set) and output (fuzzy set) of the classifier. Once the classifier is constructed, the nonfuzzy features of a pattern can be classified. At the time of classification of the nonfuzzy features of the testpatterns, we use the concept of fuzzy masking to fuzzify the nonfuzzy feature values of the testpatterns. The performance of the proposed scheme is tested on synthetic data. Finally, we use the proposed scheme for the vowel classification problem of an Indian language.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:33 ,  Issue: 1 )