By Topic

A recursive soft-decision approach to blind image deconvolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kim-Hui Yap ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Ling Guan ; Wanquan Liu

This paper presents a new approach to blind image deconvolution based on soft-decision blur identification and hierarchical neural networks. Traditional blind algorithms require a hard-decision on whether the blur satisfies a parametric form before their formulations. As the blurring function is usually unknown a priori, this precondition inhibits the incorporation of parametric blur knowledge domain into the restoration schemes. The new technique addresses this difficulty by providing a continual soft-decision blur adaptation with respect to the best-fit parametric structure throughout deconvolution. The approach integrates the knowledge of well-known blur models without compromising its flexibility in restoring images degraded by nonstandard blurs. An optimization scheme is developed where a new cost function is projected and minimized with respect to the image and blur domains. A nested neural network, called the hierarchical cluster model is employed to provide an adaptive, perception-based restoration. Its sparse synaptic connections are instrumental in reducing the computational cost of restoration. Conjugate gradient optimization is adopted to identify the blur due to its computational efficiency. The approach is shown experimentally to be effective in restoring images degraded by different blurs.

Published in:

Signal Processing, IEEE Transactions on  (Volume:51 ,  Issue: 2 )