By Topic

Computational techniques for hybrid system verification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chutinan, A. ; Shinawatra Univ., Pathumthani, Thailand ; Krogh, B.H.

This paper concerns computational methods for verifying properties of polyhedral invariant hybrid automata (PIHA), which are hybrid automata with discrete transitions governed by polyhedral guards. To verify properties of the state trajectories for PIHA, the planar switching surfaces are partitioned to define a finite set of discrete states in an approximate quotient transition system (AQTS). State transitions in the AQTS are determined by the reachable states, or flow pipes, emitting from the switching surfaces according to the continuous dynamics. This paper presents a method for computing polyhedral approximations to flow pipes. It is shown that the flow-pipe approximation error can be made arbitrarily small for general nonlinear dynamics and that the computations can be made more efficient for affine systems. The paper also describes CheckMate, a MATLAB-based tool for modeling, simulating and verifying properties of hybrid systems based on the computational methods previously described.

Published in:

Automatic Control, IEEE Transactions on  (Volume:48 ,  Issue: 1 )