By Topic

Optimising discrete event simulation models using a reinforcement learning agent

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Creighton, D.C. ; Sch. of Eng. & Technol., Deakin Univ., Geelong, Vic., Australia ; Nahavandi, S.

A reinforcement learning agent has been developed to determine optimal operating policies in a multi-part serial line. The agent interacts with a discrete event simulation model of a stochastic production facility. This study identifies issues important to the simulation developer who wishes to optimise a complex simulation or develop a robust operating policy. Critical parameters pertinent to 'tuning' an agent quickly and enabling it to rapidly learn the system were investigated.

Published in:

Simulation Conference, 2002. Proceedings of the Winter  (Volume:2 )

Date of Conference:

8-11 Dec. 2002