Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Least squares ARMA modeling of linear time-varying systems: Lattice filter structures and fast RLS algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Karlsson, E. ; Georgia Institute of Technology, Atlanta, GA ; Hayes, M.H.

The problem of modeling linear time-varying systems is one of considerable importance in many varied and diverse applications. This paper looks at AR, MA, and ARMA modeling of linear time-varying systems with lattice filters. There are two parts to this paper. The first part develops the lattice filter structures. In particular, a new ARMA(N, M) lattice filter structure is presented (N: AR order, M: MA order) which is fully consistent with the geometric characteristics of the AR and MA lattice filter structures in that it evaluates all optimal ARMA (i, j) filters of order lower than (N, M), and each such filter is realized in terms of a fully orthogonal set of realization vectors. For uncorrelated input, this ARMA lattice filter simplifies greatly, resulting in the white input ARMA lattice filter. The second part of the paper develops new fast RLS algorithms for the evaluation of the lattice filter coefficients. There are two classes of algorithms presented. One class is based on projection error sample averaging, while the other uses input-output sample averaging and some orthogonality relations. This latter approach is equivalent to the exact RLS formulation. The algorithms of the former class are the most efficient modeling algorithms known to the authors, and the algorithms of the latter class are of comparable or better efficiency than other algorithms in the same class.

Published in:

Acoustics, Speech and Signal Processing, IEEE Transactions on  (Volume:35 ,  Issue: 7 )