By Topic

Improved Fourier and Hartley transform algorithms: Application to cyclic convolution of real data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Duhamel, P. ; CNET/PAB/RPE, Paris, France ; Vetterli, M.

This paper highlights the possible tradeoffs between arithmetic and structural complexity when computing cyclic convolution of real data in the transform domain. Both Fourier and Hartley-based schemes are first explained in their usual form and then improved, either from the structural point of view or in the number of operations involved. Namely, we first present an algorithm for the in-place computation of the discrete Fourier transform on real data: a decimation-in-time split-radix algorithm, more compact than the previously published one. Second, we present a new fast Hartley transform algorithm with a reduced number of operations. A more regular convolution scheme based on FFT's is also proposed. Finally, we show that Hartley transforms belong to a larger class of algorithms characterized by their "generalized" convolution property.

Published in:

Acoustics, Speech and Signal Processing, IEEE Transactions on  (Volume:35 ,  Issue: 6 )